مثال:ثلاثة أعداد متتالية أصغرها س ومجموعها 321 فما هي الأعداد؟
يطلب المعلم من الطالب قراءة المسالة بتأن ويترك لهم الفرصة والوقت الكافي للتفكير في الحل ثم يبدأ المناقشة على النحو التالي :
-من يعرف ما معنى الأعداد المتتالية ؟
-يطلب من أحد الطلاب أن يذكر ثلاثة أعداد طبيعية متتالية ويناقش طالب ثاني أو ثالث إذا اخفق الاول
-يطرح بعض المجموعات ويطلب من الطلاب تحديد المتتالية منها
-اذا كان أصغر هذه الأعداد هو س فكم تكون الأعداد التالية
- ومن خلال المناقشة بين المعلم والطلاب وتوضيح الخطأ لمن يخطأ ويترك فرصة للتفكير وتصحيح الخطأ
ثم يسأل الطلاب عن المشكلة في هذه المسألة ويساعدهم على استنباط الفرض بأن الأعداد الثلاثة تكون على النحو التالي :
س ، س+1 ، س+2 ويكون مجموعهم يساوي 3س+3
3س+3=321 ومنها نستنتج أن س= 106
ثم يطلب من أحد الطلاب تحديد الأعداد الثلاثة المتتالية (106،107،108)
وفي النهاية يطلب من أحد الطلاب أن يتحقق من صحة النتيجة التي وصل إليها زميله(106+107+108=321)
كيف يساعد المدرس تلاميذه في اكتساب المهارة في ممارسة وأسلوب حل المشكلات:
-فهم معاني الألفاظ والتعبيرات الواردة في المسالة
-فهم العلاقات العامة في المسالة والعلاقات داخل كل جزء منها على حده
-القدرة على التعبير عن مضمون المسالة بلغة الطالب
-تصور المسالة تصورا ذهنيا وتمثيلها بالمحسوسات والأشكال الهندسية كلما أمكن0
وبصفة عامة
حتى يمارس الطلاب أساليب التفكير السابقة من خلال دراسة الرياضيات يحاول معلم الرياضيات تحقيق ما يلي :
1) ممارسة الطالب لأساليب التفكير المختلفة السابقة ممارسة عملية داخل الفصل وخارجه
2) إدراك الطالب لحدود الثقة في النتائج التي يصل إليها باستخدام كل أسلوب من أساليب التفكير .
3) إدراك الطالب للفرق بين القضايا مطلقة التعميم والقضايا محدودة التعميم .
4) تأكد الطالب من صحة القضايا التي يعتمد عليها في تفكيره .
5) مراجعة الطالب للنتيجة التي وصل إليها في ضوء القضايا المعطاة والموثوق في صحتها
6) إن يزود المعلم الطالب بتمارين تحتاج إلى تفكير واستنتاج
7) تنمية موهبة الطالب على البحث وراء الأسباب والتعليلات لما يقرا وتطور حاسة الحدس لديه
تنمية فكرة الابتكار لنظريات جديدة حول بعض المفاهيم الرياضية
9) التأكيد بان الرياضيات ليست مجرد حلول مسائل ولكن علاوة على ذلك فإنها
فلسفة وطريقة تفكير رياضية
الخلاصة
· إن الأساليب السابقة لا يمكن فصلها إذ قد يستخدم المعلم أثناء شرحه أكثر من أسلوب والذي يعنينا أنه عن طريق هذه الأساليب كل منها منفرداً أو باجتماع كل اثنين منها أو أكثر هو إكساب الطلاب التفكير الفعال في مواجهة المشاكل في مجال دراسة الرياضيات.
· أن هذه الأساليب تساعدهم على البرهنة وحل المسائل وهذا يدخل في نطاق الإبداع والاختراع . فالطالب أثناء حله للمسألة يكون كالفنان المبدع إذ يمارس المتعة واللذة والألم التي يمارسها الفنان في عملية الإبداع .
· وتصل عملية الحل إلى قمتها والى ذروتها في اللحظة التي تتجمع فيها العناصر في أماكنها المناسبة في المجال المباشر للتفكير فيظهر الحل فجأة عند هذه اللحظة فإن التحليل يسبقها ويأتي بعدها التركيب .
· بالإضافة إلى ذلك فان التفكير الفعال الذي يمكن أن يكتسبه الطالب عن طريق الأساليب السابقة يساعده في حل مشكلاته اليومية أي لم يعد الأمر يقتصر فقط على استخدام هذه الأساليب في حل مسائل الرياضيات ولكنه يصبح سمة مميزة تلازم الطالب ويستخدمها في حل المشكلات التي تصادفه والتي تحتاج إلى الوصول بواسطة الحقائق المعطاة إلى الهدف عن طريق دراسة الحقائق والعلاقات ودراسة الهدف المطلوب ورسم الخطة لعبور الفجوة بين المعطيات والمطلوب واختيار الوسائل اللازمة لذلك وفي والتأكد من الوصول إلى الهدف المنشود.